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DISCLOSURES

• This presentation does not present any Bayer data. 

• The results presented are based on simulated data.

• Any interpretations, recommendations and opinions presented are those of the 
presenter not those of the Bayer corporation.

• A portion of the slides were presented at the BASS 2019 meeting by the presenter.  This 
version extends and adds material
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OUTLINE

• Observations on Observational Studies (OS) and Intentional Design

• Key Propensity Score Theorems (Two Group Case) 
• Balancing Scores - ATE and ATT Weights

• Propensity Scores for >2 Groups 
• Addressing analytical Issues in curated (non-random) sampling in OS 

• The Sneetch Simulation Example – Treatment Bias and Outcome parameters
• Results – Balance and Bias/Variance in Estimation

• Conclusions 
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OBSERVATIONAL DATA - ISSUES AND POSITIVES

• Inherent differences between patient cohorts as they are channeled to therapies based 
on the patient’s profile and the patient/physician interaction.

• Without a pre-specified pathway through the data there can be publication bias due to 
unpublished results and inflation in false positive rates.

• Missing data requiring imputation methods especially in retrospective data

• Positives to real world data include 

• very little filtering out of patients though inclusion/exclusion criteria and 

• with retrospective data there are no biases driven by known hypotheses.
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CLINICAL TRIALS VERSUS OBSERVATIONAL DATA

CLINICAL TRIALS
• Usually very controlled in order to reduce noise and detect 

differences effectively. Project management intensive.

• Specified Interventional Agents

• Limited contexts such as those at diagnosis, maintenance and 
after relapse. 

• Somewhat strict regimen schedules, dosage,  and treatment 
duration. 

• Prospectively Collected with near mandatory collection and 
recording of items in a pre-designed Case Report Form. Very 
limited missing data.

OBSERVATIONAL DATA
• Data includes sources like electronic medical records and 

registries.  Data handling and analysis intensive.

• Typically, non-interventional and physician is free to prescribe 
at will.

• Can record patient experience from diagnosis through 
progressions and death.

• Regimen schedules, dosage, treatment durations and 
combinations are highly variable.

• Transcription of available retrospective and prospective data. 
Missing data at baseline.
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INTENTIONAL OBSERVATIONAL STUDY DESIGN

• Deliberate study design involving the following blinded to outcomes

• Pre-specification of population carve-outs and Primary endpoints and hypotheses

• The choice of baseline characteristics to reduce bias when comparing treated groups on outcomes

• Pre-specified analysis methods to control for differences at baseline

• Collection/acquisition of all these baseline characteristics with leverage in the analysis: 

• Leading to a differential use of treatments and

• Having effect on outcome. 

• After design stipulation in an analysis plan, unblind to outcome data and conduct analysis. 
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KEY PROPENSITY SCORE THEOREMS 
- TWO GROUP CASE

• Rosenbaum and Rubin (1983): “A balancing score, b(x), is a function of observed covariates x such that 
the conditional distribution of x given b(x) is the same for treated (z=1) and control (z=0) units.” 

• The coarsest such function is the propensity score e(x).  

• Let e 𝒙𝒙 = 𝑃𝑃(𝑧𝑧 = 1|𝒙𝒙) for a vector x of p covariates.

• To show that this is a balancing score, let e(x) take some value g and 𝜒𝜒𝒈𝒈 be the set of all covariate values 
in 𝑅𝑅𝑝𝑝 such that e(.) = g. Then conditional on e(x) taking a value g, x can vary over the set 𝜒𝜒𝒈𝒈 with the 
probabilities of treatment 𝑃𝑃(𝑧𝑧 = 1|𝒙𝒙 𝜖𝜖 𝜒𝜒𝒈𝒈) invariantly equal to g, making treatment independent of 
covariate values conditional on e(x). By definition, the set 𝜒𝜒𝒈𝒈 differs as g differs making e(x) coarsest.

• This allows for the use of the propensity score e(x) for matching,  stratification by score intervals,  
covariate adjustment and weighting to help obtain unbiased estimates of treatment effect.
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WEIGHTS FOR SUBJECTS DURING ANALYSIS
- FOR ATE AND ATT EFFECTS
• IPTW: let Zi be an indicator variable denoting whether or not the ith subject was treated; furthermore, let pi denote the 

propensity score (PS) for the ith subject then the inverse probability of treatment weighting wi is defined, in the context of 
obtaining the Average Treatment Effect (ATE),  as 

• wi =1/pi for a target therapy  subject

wi = 1/(1-pi ) for a control subjects

Average treatment effect in the treated (ATT) multiples both weights above by the subject PS pi

Stabilized weights (reduce variability in estimating treatment effect due to extreme weights due to PS near 0 or 1)

• wi = P(subject in Target)/pi for a Target Therapy  subject

wi = P(subject in Control)/(1-pi ) for a control subjects

P(subject in Target) = (number of Target subjects) /(number of Target subjects+ number of Control subjects)
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PROPENSITY SCORE (PS) METHODS -
MORE THAN 2 GROUPS
• For a large number p of covariates X, the results assume that the probabilities of receiving the k treatments (z=1, 2 …k) can be 

determined without bias. 

• Consider vector score 
• es(x)T = 𝑒𝑒1𝒔𝒔, 𝑒𝑒2𝒔𝒔, . . , 𝑒𝑒𝑘𝑘𝒔𝒔 , with 𝑒𝑒𝑖𝑖𝒔𝒔 𝒙𝒙 = 𝑃𝑃(𝑧𝑧 = 𝑖𝑖|𝒙𝒙, 𝒔𝒔) for a given x. 

• Proof of the result
• Let es(x) equal some vector value g and 𝜒𝜒𝒈𝒈 be the set of all covariate values in 𝑅𝑅𝑝𝑝 such that es(.) = g. 

• Then conditional on es(x) taking a value g, x can vary over the set 𝜒𝜒𝒈𝒈 (the coarsest set by definition) with the probabilities of 
treatment 𝑃𝑃(𝑧𝑧 = 𝑖𝑖|𝒙𝒙 𝜖𝜖 𝜒𝜒𝒈𝒈) invariantly equal to gi

• This makes treatment independent of covariate values conditional on es(x), and thus, a propensity score.

• Results are extensions of Rosenbaum and Rubin (1983) to k > 2  in Imai and Van Dyke (2004). Outcome differences on 
balancing are interpretable as a difference in treatment effects with each effect being the aggregate had all subjects in the
population received that treatment (ATE).

• We add a limiting conditioning s referring to a curated sampling process in observational data to be described in our next slide. 
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CURATED (NON-RANDOM) SAMPLING IN OS –
NATURE OF DATA ACQUISITION

• Observational data sets, not very much unlike those in clinical trials, can often be just as curated though 
the nature of the curation differs.

• A non-random sampling process characterized by

• Data acquired depends on availability of records in electronic form, data purchase costs, data quality, availability of 
certain diagnostic data and time-frames for data pre-processing such as anonymization and IRB approvals for use. 

• Separate observational data collection, prospective or retrospective, conducted to provide one or more quasi-
controls to interventional single arm trials requiring similar contexts.

• Cohort sizes likely unrelated to any past, current or future population proportions of subjects on the therapeutic 
options studied. 

• The number and identity of therapeutic groups of interest can be influenced by resources available for data 
agglomeration and the commercial and research interests of the investigators. 
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ADDRESSING ANALYTICAL ISSUES IN CURATION –
USING CONTRASTS 

ANALYTICAL ISSUES
• Many therapy groups to select from in 

observational settings. 

• Many choices of comparisons of interest, usually 
done using treatment contrasts.   

• Disparate group sizes.

• We develop the use of contrasts in observational 
settings to address these issues. 

USING CONTRASTS
• The contrasts we use are a string of coefficients, 

with one for each treatment such that the sum of 
the contrasts is zero and the sum of the absolute 
values of the contrasts are equal to 1.0. 

• Example [0.5, -0.5, 0] and [0.5, -0.25, -0.25] for 
three treatment groups.

• In controlled studies, one usually sees the contrast 
coefficients as ‘proportions’ in a comparison

11



RESTRICTED

CONDITIONING ON THE CONTRASTED 
INFERENCE

• Consider two vector propensity probabilities (for some two subject given their covariate 
profiles) of having treatments 1 to 3 of

1. {0.1, 0.2, 0.7} and {0.2, 0.4, 0.4} 
2. Then the contrast [0.5, -0.5, 0] to compare treatments 1 and 2 ,
3. would have had balancing propensity scores {0.33,0.66}  for both subjects conditional on the 

chosen inference if our sampling process did not collect or consider treatment 3.

• Inverse propensity weighting in analysis of outcome, conditionally (# 3 above) requires equal 
weights while unconditionally (# 1 above) the weights are larger by a factor of 2 for the first 
subject.

• Rather Odd!
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CURATED DATA CONTRAST EFFECT (CCE)

• For k groups, a contrast is defined through 
• a vector  𝒄𝒄𝑇𝑇 = 𝑐𝑐1, 𝑐𝑐2, . . , 𝑐𝑐𝑘𝑘
• where ∑𝑖𝑖=1𝑘𝑘 𝑐𝑐𝑖𝑖 = 0 and ∑𝑖𝑖=1𝑘𝑘 𝑐𝑐𝑖𝑖 = 1 .

• The absolute value 𝑐𝑐𝑖𝑖 is interpretable as the proportion randomly selected in Group i independent of 
the sampling process. 

• The probability 𝑃𝑃 𝑧𝑧 = 𝑖𝑖 𝒄𝒄 = 𝑐𝑐𝑖𝑖 . 

• For propensities {0.1, 0.2, 0.7} and contrast [0.5, -0.5, 0], conditionally we get

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖∗ 𝑐𝑐𝑖𝑖
∑𝑖𝑖=1
𝑘𝑘 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖∗ 𝑐𝑐𝑖𝑖

= {0.33,0.66}

• We will refer to inferences drawn in this setting as Curated Contrast Effects.
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PROPENSITY SCORES UNCONDITIONAL (LEFT) AND 
CONDITIONAL (RIGHT) ON CONTRASTED INFERENCE

• Balancing Propensity Score

es(x)T = 𝑒𝑒1𝒔𝒔, 𝑒𝑒2𝒔𝒔, . . , 𝑒𝑒𝑘𝑘𝒔𝒔 , with 

𝑒𝑒𝑖𝑖𝒔𝒔 𝒙𝒙 = 𝑃𝑃(𝑧𝑧 = 𝑖𝑖|𝒙𝒙, 𝒔𝒔) for a given x. 

• Balancing propensity Score

ecs(x)T = 𝑒𝑒1𝒄𝒄𝒔𝒔, 𝑒𝑒2𝒄𝒄𝒔𝒔, . . , 𝑒𝑒𝑘𝑘𝒄𝒄𝒔𝒔 , with

𝑒𝑒𝑖𝑖𝒄𝒄𝒔𝒔 𝒙𝒙 = 𝑃𝑃(𝑧𝑧 = 𝑖𝑖|𝒙𝒙, 𝒄𝒄, 𝒔𝒔)

=
𝑃𝑃 𝑧𝑧 = 𝑖𝑖 | 𝒙𝒙, 𝒔𝒔 ∗ 𝑃𝑃(𝑧𝑧 = 𝑖𝑖 | 𝒄𝒄)

∑𝑖𝑖=1𝑘𝑘 𝑃𝑃 𝑧𝑧 = 𝑖𝑖 | 𝒙𝒙, 𝒔𝒔 ∗ 𝑃𝑃(𝑧𝑧 = 𝑖𝑖 | 𝒄𝒄)
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WEIGHTS UNCONDITIONAL (LEFT) AND CONDITIONAL 
(RIGHT) ON CONTRASTED INFERENCE

• Expression for the Sample Weights

⇒ 𝑒𝑒𝑖𝑖𝑖𝑖 𝒙𝒙 = 𝑃𝑃 𝑧𝑧 = 𝑖𝑖 𝒙𝒙, 𝜖𝜖𝜒𝜒𝒈𝒈, 𝒔𝒔 = 𝑃𝑃(𝒙𝒙 𝜖𝜖𝜒𝜒𝒈𝒈|𝑧𝑧=𝑖𝑖,𝒔𝒔)𝑃𝑃(𝑧𝑧=𝑖𝑖| 𝒔𝒔)
𝑃𝑃(𝒙𝒙 𝜖𝜖𝜒𝜒𝒈𝒈| 𝒔𝒔)

⇒ 𝑃𝑃(𝒙𝒙 𝜖𝜖𝜒𝜒𝒈𝒈| 𝒔𝒔) =
𝑃𝑃(𝒙𝒙 𝜖𝜖𝜒𝜒𝒈𝒈|𝑧𝑧 = 𝑖𝑖, 𝒔𝒔)𝑃𝑃(𝑧𝑧 = 𝑖𝑖| 𝒔𝒔)

𝑒𝑒𝑖𝑖𝑖𝑖 𝒙𝒙

 Then the sample weight below will weight a covariate profile in

𝒙𝒙 𝜖𝜖𝜒𝜒𝒈𝒈 such that it is not predictive of treatment in the weighted

sample.

𝑃𝑃(𝑧𝑧 = 𝑖𝑖| 𝒔𝒔)
𝑒𝑒𝑖𝑖𝑖𝑖 𝒙𝒙

• Expression for the Sample Weights for covariate 
profiles to make un-predictive of treatment 

𝑃𝑃(𝑧𝑧=𝑖𝑖| 𝒄𝒄,𝒔𝒔)
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝒙𝒙

for 𝑒𝑒𝑖𝑖𝒄𝒄𝒔𝒔 𝒙𝒙 as  above

𝑃𝑃(𝑧𝑧 = 𝑖𝑖| 𝒄𝒄, 𝒔𝒔) = =
𝑃𝑃 𝑧𝑧 = 𝑖𝑖 |𝒔𝒔 ∗ 𝑐𝑐𝑖𝑖

∑𝑖𝑖=1𝑘𝑘 𝑃𝑃 𝑧𝑧 = 𝑖𝑖 |𝒔𝒔 ∗ 𝑐𝑐𝑖𝑖
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Few unruly Strands

My Star On 
Machine

*Snapshot from goodreads.com

• As you can see, in the world of the Sneetches 
there is perhaps only one differentiating factor.

• Note that the differentiating factors should 
plausibly have effect on outcome.

• In addition to a visitation by a dubious 
entrepreneur selling star-on machines, what is a 
little less known, is perhaps a less dubious pitch of 
hair restoration therapies to the Sneetches.

• We will look at balancing scores in this context for 
3 snake oil treatments for hair growth where 
there are biases based on just one covariate --
The Plain Belly/Green Star Belly
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THOUGHT EXERCISE – UNCONDITIONAL TO LEFT
- CONDITIONAL ON CONTRAST ON RIGHT
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SAS CODE - RAW P-SCORE TO LEFT AND
- WEIGHTS TO RIGHT
*Dataset has Subject ID, TRT (3 groups) and Covariates X1, 
X2 and X3 and sample proportions P_T1, P1_T2 and P1_T3;

Proc Logistic data = sample1_sort noprint;
CLASS trt X1;
Model trt = X1 X2 X3;      by SIM;
Output out = pred1 pred = S1_PP;

run;

Data pred1_T1; set pred1;
if _Level_ = 1;
PS_T1 = S1_PP;     Drop S1_PP;

run;

proc sort data = pred1_T1 out = pred1_T1s;
by SIM ID;
Run;

Data pred1_T2; set pred1;
if _Level_ = 2;
PS_T12 = S1_PP;     Drop S1_PP;

run;

data PS1;
Merge pred1_T1s pred1_T2s;
by SIM ID;
PS_T2 = PS_T12 - PS_T1 ;
PS_T3 = 1 - PS_T1  - PS_T2;
IF TRT = 1 then do;
*sample treatment proportions P(Z=i/s);
P_UC = P_T1;       
*Eis(x) ; PS_UC = PS_T1;

*treatment proportion conditional on contrast P(Z=i/s,C);
P1_C2 =  0.5*P_T1/(0.5*P_T1 +0.25*P_T2+ 0.25*P_T3);
*Eisc(x) ; PS_C2 = 0.5*PS_T1/(0.5*PS_T1 

+0.25*PS_T2+ 0.25*PS_T3);
*compute unconditional weight and weights conditional on 

C2;
WT_UC = P_UC/PS_UC;
WT_C2 = P_C2/PS_C2;
end;
*similar code for treatment 2 and 3; 

Else if TRT = 2 then do;
*......;
*......;

end;
run;
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BALANCE DIAGNOSTICS

• Side by Side Raw Means (SD) juxtaposed with Side-by-Side Weighted Means (SD) for 
continuous covariates by Treatment

• Side by Side Raw Counts and Proportions juxtaposed with Side by Side Weighted 
Proportions for discrete covariates by Treatment

• Standardized Mean Differences (SMD) for Raw versus Weighted covariates

• Two Group Case => {M1 - M2}/SQRT{(V1+V2)/2} for sample means M and Variances V

• For our Contrasts C1 = [0.5 -0.5, 0] => 2(0.5*M1 -0.5*M2)/Sqrt(0.5*V1+0.5*V2) and

• For C2 = [0.5 -0.25, -0.25] => 2(0.5*M1 -0.25*M2-0.25*M3)/Sqrt(0.5*V1+0.25*V2+0.25V3)
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SAS CODE – WEIGHTED MEANS AND SD TO LEFT
- STANDARDIZED MEAN DIFFERENCE RIGHT   
*PS1_sorted data contains Subject ID, TRT (3 groups) and 
Covariate X2 
and the Weights WT_C2 WT_CI  and WT_UC;
Proc means data = PS1new noprint;

Var X2;
by sim trt;       Weight WT_C1;   
Output out = base mean = M STD = SD;

run;
Data base1 (drop = trt _type_ _Freq_) ; set base;
if trt = 1;   M_1 = M;   SD_1 =  SD;

run;
Proc sort data = base1;   by sim; run;

Data base2  (drop = trt _type_ _Freq_) ; set base;
if trt = 2;   M_2 = M;   SD_2 =  SD;

run;
Proc sort data = base2;    by sim; run;

Data base3  (drop = trt _type_ _Freq_) ; set base;
if trt = 3;   M_3 = M;   SD_3 = SD;

run;
Proc sort data = base3;    by sim; run;

Data base_all; merge base1 base2 base3;
by sim;

run;

*For contrast C2 = [0.5,-0.25,-0.25];
Data SMD; Set base_all;

V1 = (SD_1)**2;
V2 = (SD_2)**2;
V3 = (SD_3)**2;
DENOM_C2 = SQRT(0.5*V1+0.25*V2 +0.25*V3);
DIFF2 = 2*(0.5*M_1 - 0.25*M_2 - 0.25*M_3);
SMD_C2 = DIFF2/DENOM_C2;

run;
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WEIGHTED TIME TO EVENT ANALYSIS

Design Matrix

TRT β1 β2

1 1 0

2 0 1

3 0 0

Contrast C2 Contrast by subtraction

1 1 0

0.5*(2 and 3) 0 0.5

Trt 1 vs Trt2 &3 1 -0.5

WEIGHTED COX REGRESSION

*PS1_sorted2 data contains Subject ID, TRT (3 
groups), TTE duration and Censor and the Weights;
*SAS contrast for C2 given reference group of trt 3;

Proc phreg data = PS1s;
class trt (ref = '3')/ param=ref 

order=internal;
Model TTE*censor(0) = trt;
Weight WT_C1;
by SIM;
contrast 'trt1 vs trt2' TRT 1 -0.5 / 

estimate =parm;
ods output ContrastEstimate = WT_C2;

run;

SAS SETS TRT3 COEFFICIENT TO 0 AND USES THE MODEL: 

LOG H(T) = LOG HO(T) + Β1*TRT1 + Β2*TRT2
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Three Hair Growth 
Treatments

Plain or
Star Belly
~ Bernoulli
with p  =0.4

Height
~ Exponential
With Mean of
50 inches.

Bald Spot 
Luminosity
~ Exponential
with a mean 
of 0.5 watts

Simulation Exercise

1. Simulate covariate values on 50K subjects in 
the population over 50 simulations

2. Generate treatments using coefficients 
predicting treatment

3. Generate time-to event outcome (time to 
complete baldness)

4. Pick curated sample selecting 100, 220 and 
310 simulation subjects on treatments 1, 2 
and 3 respectively

5. Find conditional and unconditional weights

6. Use weights in outcome models and 
compare estimated treatment effects versus 
simulation parameters (#3 above) 
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SIMULATION PARAMETERS GENERATING TREATMENTS:
TREATMENT BIAS MODEL

Treatment Bias Model X1 (Belly Star) X2 (Height) X3 (Bald Patch 
Luminosity)

LOGIT (Trt 1 vs Trt 2)

Odds Ratios 1.65 1.45 1.2

Coefficients 
Corresponding to Odds 
Ratio Above

0.5008 0.3716 0.1823

LOGIT (Trt 1 vs Trt 3)

Odds Ratios 1.25 1.10 1.5

Coefficients 
Corresponding to Odds 
Ratio Above

0.2231 0.0953 0.4055
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SIMULATION PARAMETERS GENERATING OUTCOME:
OUTCOME MODEL

Outcome Model Trt 1 vs Trt 2 
Contrast: 

[0.5, -0.5, 0]

Trt 1 vs Trt 3 
Contrast: 

[0.5, -0.5, 0]

Trt 1 vs {Trt2 and Trt 3} 
Contrast: 

[0.5, -0.25, -0.25]

X1 (Belly 
Star)

X2 (Belly 
Volume)

X3 (Bald Patch 
Luminosity)

Hazard Ratio for 
Time to 
Complete 
Baldness (X3)

0.6 0.75 0.6708 0.95 1.35 1.60

Coefficients for 
Cox Regression 
for X3 above

-0.5108 -0.2877 -0.3993 -0.0513 0.3001 0.4700

A 5-year follow-up (20 Sneetch years) was used,  1.5 years uniform enrollment, exponential distributions and a 
baseline hazard (X1 =0 and X2 and X3 at mean values) corresponding to a median of 3 years. HR for X2 and X3 
correspond to SD increments over mean.
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STANDARDIZED MEAN DIFFERENCE OVER 50 SIMULATIONS 
- TRT 1 VS {TRT 2 AND TRT3} CONTRAST

Standardized Mean Difference 
(SMD)

X1 (Belly Star) X2 (Height) X3 (Bald Patch 
Luminosity)

Raw Means

Average SMD 0.204 0.188 0.260
STD of SMD 0.089 0.123 0.117

Weighted Means -Unconditional

Average SMD 0.204 0.256 0.003
STD of SMD 0.077 0.089 0.065

Weighted Means - Conditional

Average SMD 0.203 0.239 0.068
STD of SMD 0.072 0.092 0.074
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SIMULATION RESULTS OVER 50 SIMULATIONS
- TRT 1 VS {TRT 2 AND TRT3} CONTRAST

Parameter Non-weighted 
using covariates

Unconditional 
on Contrast

Conditional 
on Contrast

LN(HR) -0.3993 - - -

Hazard Ratio (HR) 0.6708 - - -

Simulation Results Curated Sample selecting 100, 220 and 310 simulated subjects in 
Treatments 1, 2 and 3 respectively

AVG Estimate of LN(HR) - -0.561 -0.434 -0.414
Bias in LN(HR) - -0.162 -0.034 -0.015
Associated HR - 0.570 0.648 0.661
STD of Estimates - 0.170 0.168 0.165
Average SE over 
Simulations

-
0.149 0.148 0.147
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CONCLUSIONS/QUESTIONS

• The unconditional weights are 
• Consistent with stabilized weights for >2 groups and consistent with the contrast conditional 

weights only for 2 groups and the contrast [0.5, -0.5]. 
• For the three-group pair-wise case results were similar.

• Cox regression inferential analysis bias and variance using weights were much improved 
compared to using covariates without weighting, with improvements on conditioning on 
contrasts to be further explored. 

• Standardized mean differences were only selectively reduced using both weighting methods.  
The Coarseness of PS scores, while making treatment independent of the overall covariate 
profile, may leave differences on individual covariates.
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